Calculation Policy

MAPLEWELL
HALL SCHOOL

A guide for teachers and parents/carers

January 2017

'Mathematics is a creative and highly inter-connected discipline essential to everyday life. A high-quality mathematics education provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject' - National Curriculum, 2014

MAPLEWEL

Introduction

Our school has adopted the White Rose Hub's calculation document, who are leaders in the field of Mastery in Mathematics. We adapted the policy to match with our school's approach

This policy is a statement of the aims, principles and strategies for teaching and learning of calculation strategies in Mathematics. It is designed to help teachers and staff at Maplewell Hall Scholl ensure that calculation is taught consistently across the school and to aid them in helping children who may need extra support or challenges.

This policy is also designed to help parents, carers and other family members support children's learning by providing an explanation of the methods used in our school.

The policy is set out in subjects, addition, subtraction, multiplication and division. Within each specific area there is a progression of skills, knowledge and layout for written methods. The calculation strategies which will be used will reflect this ideology - moving from concrete to pictorial and then abstract recording leading to more formal written methods. Mental methods and strategies will work in partnership with these methods.

Variety of mental calculation methods will be taught and that recall of facts will be taught in school and tested regularly. The progression of mental methods and expectations will comply with the New National Curriculum Statements from July 2014.

At Maplewell it is important that staff always use correct mathematical language and encourage this from every pupil. This will take place in class discussions as well as through oral and written feedback, next steps and target setting.

The basis of our maths calculation policy is that written methods are complementary to mental methods and should not be seen as separate from them. Children should use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

This document identifies progression in calculation strategies rather than specifying which method should be taught in a particular year group.

According to Mastery in Mathematics, children should not be made to go onto the next stage of their development if they are not ready and they are not confident. This will leads to misconceptions and poor mathematical foundations and eventually, in later years, pupils will not be able to make the required progress.

Eventually we aim to enable pupils to make informed choices about the methods they use both mental and written that are the most efficient and this includes recognised compact methods.

Developmental Aims:

- To ensure consistency and progression in our approach to calculation and enable a smooth transition between year groups.
- As children begin to understand the underlying ideas they develop ways of recording to support their thinking and calculation methods, use particular methods that apply to special cases.
- To enable children to learn to interpret and use the signs and symbols.
- As children acquire secure mental methods of calculation and one efficient written method of calculation for addition, subtraction, multiplication and division which they know they can rely on when mental methods are not appropriate.
- To ensure that children can use these methods accurately with confidence and understanding.
- At whatever stage in their learning, and whatever method is being used, children's methods of calculating will be underpinned by a secure and appropriate knowledge of number facts, along with the mental skills that are needed to carry out the process and judge if it was successful.
- To ensure that pupils are competent in fluency, reasoning and problem solving and can make informed and appropriate choices about the methods they wish to use (mental or written) to solve mathematical problems efficiently and effectively.

Progression in Calculations

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.		
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the	$12+5=17$	$5+12=17$

	Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	
Column method- no regrouping	24 + 15= Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$
Column methodregrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & \frac{40+8}{60+13}=73 \end{aligned}$

Subtraction

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$$
6-2=4
$$ \& Cross out drawn objects to show what has been taken away.

$$
15-3=12
$$ \& \[

$$
\begin{aligned}
& 18-3=15 \\
& 8-2=6
\end{aligned}
$$
\]

\hline Counting back \& Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.

\[
13-4

\] \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. | \& Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

\hline
\end{tabular}

Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	\odot 0 0 \odot $0 Q$ $00 Q \alpha$ 		$\begin{gathered} 47-24=23 \\ 40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters			

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Repeated addition	Use different objects to add equal groups．	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures．
Arrays－showing commutative multiplication	Create arrays using counters／cubes to show multiplication sentences．	Draw arrays in different rotations to find commutative multiplication sentences． $\begin{aligned} & 1002=8 \\ & 2 \times 4-8 \\ & 4 \times 2=8 \\ & 200 \\ & 2 \times 4=8 \\ & 200 \end{aligned}$ Link arrays to area of rectangles．	Use an array to write multiplication sentences and reinforce repeated addition． $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r.
Short division	 Use place value counters to divide using the bus stop method alongside	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder.

References

1. Maths Progression in Calculation Policy https://drive.google.com/drive/folders/OB4zK1m7abbjEYzNDcGOweFM1aHc
2. National curriculum in England: mathematics programmes of study https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study/national-curriculum-in-england-mathematics-programmes-of-study
3. Calculation Guidance for primary schools - NCETM
https://www.ncetm.org.uk/resources/48070
